2) I throw a fair die repeatedly. Let Yy, Y;,Ys, -+ Y, -+ be the numbers
rolled (they areii.d. uniformon {1, 2, 3,4, 5,6}). We define (X, )n>0 by X,, =
max{Yp, Y1,Ys, -+ Y, } (so with probability one the chain is absorbed at state
6).

(i) (Xp)nzo is a (A, P) Markov chain. (You need not prove it is a Markov
chain!). What is A and P? .

(i) Is the chain aperiodic ? Irreducible ?

(iii) For i € {1,2,3,4,5,6}, let function k(i) = P(Ty < oo| X, = i). Find A(3)
for each i where as before. Ty = inf{n > 0 : X,, = 4}. Give corresponding
linear equations for h. Is P(Ty < oo|X, = i), the only solution for these
equations ?

(iv) Calculate the expected time the process spends in state 5.
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3)What does it mean for a Markov chain (X, )n>0, with transition matrix
P, to satisfy the detailed balence equations for measure 7 on the state space ?
(ii)For an irreducible continuous time chain (X;);>o, with @—matrix @, sa-
tisfying the detailed balance equations with measure 7 on the state space,
show that the measure 7 is invariant for Q.
(iii) Give a criterion for X, as in (ii), to be positive recurrent (given that =
is a distribution).
(iv) Suppose now that X is a (continuous time) random walk on the graph

&

so for the jump chain F;; is zero if ¢ and j are not neighbors and is
otherwise + A where d; is the degree of vertex ¢ on the graph. The jump rate
¢ = 1 for each state i. Find the equilibrium 7. Can you generalize to general
finite connected graphs satisfying these conditions? Is it true that for any
Xo, P(X: =1) = 7w(3) 7 (Recall that a graph is connected if there exists a
path between any two distinct sites.)
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