
2) I throw a fair die repeatedly. Let Yo,Y,Yz,. . 'Yn,. . ' be the numbers
rolled (they a,re i.i.d, uniform on {1, 2,3,4,5,6}). We define (Xn)n>oby Xn :
ma:r{Ys, Yt,Yz,. . .Y"} (so with probability one the chain is absorbed at state
6).
(i) (X")">s is a (À, P) Markov chain. (You neecl not prove it is a Markov
chain !). What is ) and P ?

(ii) Is the chain aperiodic ? Irreducible ?

(iii) For i € {1,2,3)4,5,6}, let function h(i) : P(T+ < oolx' : i). Find h(z)
for each a where as before. Ta : inf{n ) 0 : Xn :4}. Give corresponding
linear equations for h,,Is P(Ta < oolxo : i), the only solution for these
equations ?

(iv) Calculate the expected time the process spends in state 5,
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3)What does it mean for a Markov chain (X"),,2o, with transition matrix
P,to satisfy the detailed balence equations for measure 7r on the state space ?

(ii)For an irreducible continuous time chain (Xr)r>g, with Q-matrix Q, sa-

tisfying the detailed balance equations with measure zr on the state space,

show that ihe measure zr is invariant for Q.
(iii) Give a criterion for X, as in (ii), to be positive recurent (given that zr

is a distribution).
(iv) Suppos" 

"oT
that X is a (continuous time) random walk on the graph

7

k
so for the jump chain P;7 is zero if i and j arc not neighbors and is

otherwise f where d6 is the degree of vertex i on the graph. The jump rate
e: I for each state i. Find the equilibrium r. Can you generalize to general
finite connected graphs satisfying these conditions ? Is it true that for any
Xs, P(X1 : i,) + r(i,)? (Recall that a graph is connected if there exists a
path between a,ny two distinct sites.)
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